close

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Cushion insole OEM solution ViCushion insole OEM solution Vi

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Cushion insole OEM solution ViCushion insole OEM solution ViCushion insole OEM solution Vi

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Graphene cushion OEM factory in Vietnam

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.ODM service for ergonomic pillows Taiwan

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Taiwan insole ODM design and manufacturing factory

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Thailand graphene sports insole ODM

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Pillow ODM design and manufacturing company in Taiwan

Stick insects, Timema knulli, on a Redwood tree branch. Utah State University evolutionary geneticist Zach Gompert and colleagues studied a chromosomal inversion in the species and report findings in the June 12, 2023, online edition of PNAS. Credit: Moritz Muschick The complexity of evolutionary processes affecting an inversion in stick insects provides resilience against loss of genetic variation, and may foster long-term survival. Genetic variation is the ultimate fuel for evolution, says Utah State University evolutionary geneticist Zachariah Gompert. But, over centuries, that fuel reservoir gets depleted in the course of natural selection and random genetic drift. Whether, or how, genetic variation can persist over the long haul remains a big question for scientists. Gompert and colleagues from the University of Montpellier in France, the United Kingdom’s John Innes Centre, the National Autonomous University of México, Querétaro; the University of Nevada, Reno; and the University of Notre Dame, published their investigation of this question in the June 13, 2023, online edition of the Proceedings of the National Academy of Sciences. The research was supported by a National Science Foundation CAREER Award Gompert received in 2019, along with funds from the European Research Council. “We examined how you maintain genetic variation in a species, and how such variation impacts adaptation,” says Gompert, associate professor in USU’s Department of Biology and the USU Ecology Center. For the study, the team investigated stick insects (genus Timema), which feed on a wide variety of plants. “There are more than a dozen species of Timema in western North America and they’re generalists that can eat many types of plants,” Gompert says. “But one species, Timema knulli, feeds and thrives on Redwood trees, which one of the only plants that other Timema species can’t thrive on as well or at all.” Ancient Chromosomal Inversions: A Key to Survival It appears T. knulli has this ability because of a chromosomal inversion – that is, a change in the structure of its genome. Unlike a gene mutation, which is a change in the DNA sequence, a chromosomal inversion occurs, Gompert says, when two breaks in the chromosome are followed by a 180-degree turn of the segment and reinsertion at the original breakpoints. “With an inversion, big chunks – in this case, 30 million DNA bases – of the chromosome get flipped backward,” he says. And this inversion in T. knulli, the team determined, is ancient. “We think it occurred about 7.5 million years ago,” Gompert says. “And the cool thing is, T. Knulli populations still carry both versions of the alleles – the one for feeding and thriving on Redwoods as a host plant, and the original one that increases survival on the ancestral host plant – a flowering plant – and may be especially favorable in the heterozygous form.” Environmental Heterogeneity and Gene Flow Environmental heterogeneity and gene exchange among migrating populations of stick insects contribute to the persistence of the new and ancestral chromosomal variants or polymorphism, he says, which may give the organisms a leg up in a changing world by allowing for ongoing evolution and adaptation. “Rather than being a detriment, the complexity of evolutionary processes affecting this inversion provides resilience against the loss of genetic variation, and may foster long-term survival,” Gompert says. Reference: “Complex evolutionary processes maintain an ancient chromosomal inversion” by Patrik Nosil, Victor Soria-Carrasco, Romain Villoutreix, Marisol De-la-Mora, Clarissa F. de Carvalho, Thomas Parchman, Jeffrey L. Feder and Zachariah Gompert, 13 June 2023, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2300673120 Funding: National Science Foundation

Phylogenetic trees, starting with an individual cancer cell. Each color represents a different location in the body. A very colorful tree shows a highly metastatic phenotype, where a cell’s descendants jumped many times between different tissues. A tree that is primarily one color represents a less metastatic cell. Credit: Jeffrey Quinn/Whitehead Institute Using CRISPR technology, researchers are tracking the lineage of individual cancer cells as they proliferate and metastasize in real-time. When cancer is confined to one spot in the body, doctors can often treat it with surgery or other therapies. Much of the mortality associated with cancer, however, is due to its tendency to metastasize, sending out seeds of itself that may take root throughout the body. The exact moment of metastasis is fleeting, lost in the millions of divisions that take place in a tumor. “These events are typically impossible to monitor in real-time,” says Jonathan Weissman, MIT professor of biology and Whitehead Institute for Biomedical Research member. Now, researchers led by Weissman, who is also an investigator with the Howard Hughes Medical Institute, have turned a CRISPR tool into a way to do just that. In a paper published on January 21, 2021, in Science, Weissman’s lab, in collaboration with Nir Yosef, a computer scientist at the University of California at Berkeley, and Trever Bivona, a cancer biologist at the University of California at San Francisco, treats cancer cells the way evolutionary biologists might look at species, mapping out an intricately detailed family tree. By examining the branches, they can track the cell’s lineage to find when a single tumor cell went rogue, spreading its progeny to the rest of the body.  “With this method, you can ask questions like, ‘How frequently is this tumor metastasizing? Where did the metastases come from? Where do they go?’” Weissman says. “By being able to follow the history of the tumor in vivo, you reveal differences in the biology of the tumor that were otherwise invisible.” Scratch Paper Cells Scientists have tracked the lineages of cancer cells in the past by comparing shared mutations and other variations in their DNA blueprints. These methods, however, depend to a certain extent on there being enough naturally occurring mutations or other markers to accurately show relationships between cells.  That’s where Weissman and co-first authors Jeffrey Quinn, then a postdoc in Weissman’s lab, and Matthew Jones, a graduate student in Weissman’s lab, saw an opportunity to use CRISPR technology — specifically, a method developed by Weissman Lab member Michelle Chan to track embryo development — to facilitate tracking. Instead of simply hoping that a cancer lineage contained enough lineage-specific markers to track, the researchers decided to use Chan’s method to add in markers themselves. “Basically, the idea is to engineer a cell that has a genomic scratchpad of DNA, that then can be ‘written’ on using CRISPR,” Weissman says. This ‘writing’ in the genome is done in such a way that it becomes heritable, meaning a cell’s grand-offspring would have the ‘writing’ of its parent cells and grandparent cells recorded in its genome. To create these special “scratchpad” cells, Weissman engineered human cancer cells with added genes: one for the bacterial protein Cas9 — the famed “molecular scissors” used in CRISPR genome editing methods — others for glowing proteins for microscopy, and a few sequences that would serve as targets for the CRISPR technology. They then implanted thousands of the modified human cancer cells into mice, mimicking a lung tumor (a model developed by collaborator Bivona). Mice with human lung tumors often exhibit aggressive metastases, so the researchers reasoned they would provide a good model for tracking cancer progression in real-time. As the cells began to divide, Cas9 made small cuts at these target sites. When the cell repaired the cuts, it patched in or deleted a few random nucleotides, leading to a unique repair sequence called an indel. This cutting and repairing happened randomly in nearly every generation, creating a map of cell divisions that Weissman and the team could then track using special computer models that they created by working with Yosef, a computer scientist. Revealing the Invisible Tracking cells this way yielded some interesting results. For one thing, individual tumor cells were much different from each other than the researchers expected. The cells the researchers used were from an established human lung cancer cell line called A549. “You’d think they would be relatively homogeneous,” Weissman says. “But in fact, we saw dramatic differences in the propensity of different tumors to metastasize — even in the same mouse. Some had a very small number of metastatic events, and others were really rapidly jumping around.” To find out where this heterogeneity was coming from, the team implanted two clones of the same cell in different mice. As the cells proliferated, the researchers found that their descendants metastasized at a remarkably similar rate. This was not the case with the offspring of different cells from the same cell line — the original cells had apparently evolved different metastatic potentials as the cell line was maintained over many generations. The scientists next wondered what genes were responsible for this variability between cancer cells from the same cell line. So they began to look for genes that were expressed differently between nonmetastatic, weakly metastatic, and highly metastatic tumors. Many genes stood out, some of which were previously known to be associated with metastasis — although it was not clear whether they were driving the metastasis or simply a side effect of it. One of them, the gene that codes for the protein Keratin 17, is much more strongly expressed in low metastatic tumors than in highly metastatic tumors. “When we knocked down or overexpressed Keratin 17, we showed that this gene was actually controlling the tumors’ invasiveness,” Weissman says. Being able to identify metastasis-associated genes this way could help researchers answer questions about how tumors evolve and adapt. “It’s an entirely new way to look at the behavior and evolution of a tumor,” Weissman says. “We think it can be applied to many different problems in cancer biology.” Where Did You Come From, Where Did You Go? Weissman’s CRISPR method also allowed the researchers to track with more detail where metastasizing cells went in the body, and when. For example, the progeny of one implanted cancer cell underwent metastasis five separate times, spreading each time from the left lung to other tissues such as the right lung and liver. Other cells made a jump to a different area, and then metastasized again from there. These movements can be mapped neatly in phylogenetic trees (see image), where each color represents a different location in the body. A very colorful tree shows a highly metastatic phenotype, where a cell’s descendants jumped many times between different tissues. A tree that is primarily one color represents a less metastatic cell. Mapping tumor progression in this way allowed Weissman and his team to make a few interesting observations about the mechanics of metastasis. For example, some clones seeded in a textbook way, traveling from the left lung, where they started, to distinct areas of the body. Others seeded more erratically, moving first to other tissues before metastasizing again from there. One such tissue, the mediastinal lymph tissue that sits between the lungs, appears to be a hub of sorts, says co-first author Jeffrey Quinn. “It serves as a way station that connects the cancer cells to all of this fertile ground that they can then go and colonize,” he says. Therapeutically, the discovery of metastasis “hubs” like this could be extremely useful. “If you focus cancer therapies on those places, you could then slow down metastasis or prevent it in the first place,” Weissman says. In the future, Weissman hopes to move beyond simply observing the cells and begin to predict their behavior. “It’s like with Newtonian mechanics — if you know the velocity and position and all the forces acting on a ball, you can figure out where the ball is going to go at any time in the future,” Weissman says. “We’re hoping to do the same thing with cells. We want to construct essentially a function of what is driving differentiation of a tumor, and then be able to measure where they are at any given time, and predict where they’re going to be in the future.” The researchers are optimistic that being able to track the family trees of individual cells in real-time will prove useful in other settings as well. “I think that it’s going to unlock a whole new dimension to what we think about as a measurable quantity in biology,” says co-first author Matthew Jones. “That’s what’s really cool about this field in general is that we’re redefining what’s invisible and what is visible.” Reference: “Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts” by Jeffrey J. Quinn, Matthew G. Jones, Ross A. Okimoto, Shigeki Nanjo, Michelle M. Chan, Nir Yosef, Trever G. Bivona and Jonathan S. Weissman, 21 January 2021, Science. DOI: 10.1126/science.abc1944

A Borneo pygmy elephant. Research from The University of Queensland reveals that large national parks not only enhance bird diversity within their boundaries but also significantly increase mammal diversity in adjacent unprotected areas. Credit: Mike & Valerie Mille Large national parks significantly boost mammal diversity in nearby unprotected areas, highlighting their importance for conservation strategies in biodiversity-rich regions like Southeast Asia. New research reveals the significant benefits of large national parks in promoting biodiversity. Not only do these parks enhance bird diversity within their boundaries, but they also increase mammal diversity in surrounding unprotected areas. The University of Queensland’s Dr. Matthew Luskin said the study, which involved using more than 2,000 cameras and bird surveys across Southeast Asia, reveals for the first time the benefit of expanding protected land areas around the globe beyond park boundaries. “Protected area expansions are often a difficult and expensive process, but our results show they are absolutely worth it,” Dr. Luskin said. “We already know that protected areas can reduce logging – and you can see that from satellite imagery – but what you can’t see is the number of animals inside the forest. “We also know that marine parks often report biodiversity spillover, whereby fish reproduce successfully inside park boundaries and their offspring disperse, benefiting surrounding habitats. “What we didn’t know until now was whether terrestrial land parks are successful in providing biodiversity spillover, or simply displace biodiversity losses to surrounding areas.” A group of Borneo pygmy elephants. Credit: Mike & Valerie Mille Research Findings and Conservation Implications “Our analysis has revealed the benefits parks, specifically large ones, have to terrestrial mammals,” Dr. Luskin said “Specifically, we found that when comparing unprotected areas near large reserves to unprotected areas that didn’t border large reserves, large reserves generated an up to 194 percent boost in mammal diversity.” Researchers say the results provide a much-needed conservation win for large reserves in the mega-biodiverse Southeast Asian region, which is under threat from a multitude of factors, namely hunting and deforestation. “Hunting is a key concern for Southeast Asia and a prime suspect for why diversity has often been assumed to decline outside of parks,” Dr. Luskin said. “Hunters are mobile and so we had thought that hunting bans within park boundaries may only displace these activities to nearby unprotected areas, undermining their net benefit. “It’s common to see hunters inside and outside of parks in many countries and we expected that hunters’ removing game animals would reduce diversity, but it appears parks limit hunting to the extent it doesn’t completely remove these animals. “Another likely benefit of large parks is they support wide-ranging animals, such as tigers or elephants, that move across entire landscapes, including protected and unprotected areas.” Recommendations for Future Conservation Efforts Lead author, Dr. Jedediah Brodie from the University of Montana, and the Universiti Malaysia Sarawak, said the teams’ work provides a clear motivation for future park designs to push for larger size as a key factor. “This would fit nicely with the UN’s 30 by 2030 goal, which would increase protected areas to 30 percent of all land,” Dr. Brodie said. “Larger parks routinely had higher bird diversity, and considering the UN’s 30 by 2030 goal, these findings support the creation of fewer larger parks compared to many smaller ones.” Moving forward, researchers aim to quantify shifts in the abundance of mammals and birds inside and outside of parks and expand their work to other regions, including Australia. “I suspect that parks will support mammal abundances even more than diversity,” Dr. Brodie said. “It’s certainly an interesting prospect and the team looks forward to clarifying the relationship between park types and biodiversity to ensure optimal conservation outcomes.” This research was published today (August 23) in the journal Nature. Reference: “Landscape-scale benefits of protected areas for tropical biodiversity” by Jedediah F. Brodie, Jayasilan Mohd-Azlan, Cheng Chen, Oliver R. Wearn, Mairin C. M. Deith, James G. C. Ball, Eleanor M. Slade, David F. R. P. Burslem, Shu Woan Teoh, Peter J. Williams, An Nguyen, Jonathan H. Moore, Scott J. Goetz, Patrick Burns, Patrick Jantz, Christopher R. Hakkenberg, Zaneta M. Kaszta, Sam Cushman, David Coomes, Olga E. Helmy, Glen Reynolds, Jon Paul Rodríguez, Walter Jetz and Matthew Scott Luskin, 23 August 2023, Nature. DOI: 10.1038/s41586-023-06410-z

DVDV1551RTWW78V

 


Insole ODM production factory in Taiwan 》your trusted source for functional product developmentThailand graphene sports insole ODM 》committed to ESG, comfort, and your brand is successGraphene insole OEM factory Taiwan 》where innovation meets ergonomic comfort and market demand

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 me76g2hk 的頭像
    me76g2hk

    兒童矯正增高鞋推薦品牌

    me76g2hk 發表在 痞客邦 留言(0) 人氣()